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This study explored the potential of a rich assessment task to reveal students’ multiplicative 
thinking in respect to a hypothetical learning trajectory. Thirty pairs of students in grades 5 
and 6 attempted the task. Twenty-two pairs applied multiplicative structure to find the number 
of items in arrays. However counting and computational errors resulted in a success rate of 
less than 50%. The rich task provided valuable data about students’ strategic choices and their 
need to develop computational fluency. 

Rich Assessment Tasks 
Through assessment educators signal to their students what they value (Clarke, 1997). 

Contemporary views about what it means to ‘do mathematics’ value a broadening of student 
activity from the performance of routine procedures, to include reasoning, flexibility, 
problem solving, making connections and the development of a productive disposition 
(Kilpatrick, Swafford, & Findell, 2001). Students’ development of mathematical processes 
requires opportunities to work on cognitively demanding tasks (Clarke Roche, Cheeseman, 
& van der Schans, 2014), described herein as rich mathematical tasks. 

Rich mathematical tasks were originally defined by Ahmed (1987) as possessing several 
critical characteristics including; intellectual quality, extended engagement, opportunities for 
collaborative work, multiple entry points and solution strategies, connectedness and 
affordance for multiple representations. Much is written about the complex interaction 
between rich tasks and teachers’ practice in the development of learning opportunities for 
students (Stein, Grover, & Henningsen, 1996; Sullivan, Askew, Cheeseman, Clarke, 
Mornane, Roche, & Walker, 2015). In our work we investigated the usefulness of a rich task 
for assessment purposes.  That is, to establish students’ strategic preferences with reference 
to a learning trajectory for multiplicative thinking. 

Progression in Multiplicative Thinking 
The construct of a hypothetical learning trajectory (HTL) was first proposed by Simon 

(1995) who saw a trajectory as a composite of teacher goals, a conjectured growth path in the 
target mathematical concept, and aligned activities. The meaning of HTL is often narrowed 
in critique to the conjectured growth path, with arguments against deterministic linear 
progression (Lesh & Yoon, 2004). However trajectories are usually developed through large 
scale teaching programmes, in-depth small-scale case studies, or design experiments. In 
recent work on HLTs, assessment tasks, growth paths and learning opportunities are aligned 
(see for example, Clements, Sarama, Spitler, Lange, & Wolfe, 2011). In a recent review, 
Sztajn, Confrey, Holt Wilson, & Edgington (2012) argued strongly for HTLs being at the 
centre of instructional design and the need for more coordination of research based 
approaches to their development. For the purposes of this paper we take the narrower view of 
HLTs as conjectured conceptual growth paths, with a focus on multiplicative thinking. 

2016. In White, B., Chinnappan, M. & Trenholm, S. (Eds.). Opening up mathematics education research (Proceedings of the 
39th annual conference of the Mathematics Education Research Group of Australasia), pp. 190–197. Adelaide: MERGA.
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A considerable body of research evidence points to a degree of consistency in the way 
students develop multiplicative thinking, though there is divergence in the language used by 
researchers, the grain size with which they describe progression and views on how thinking 
develops (Downton, 2013; Wright, 2011). Essentially multiplicative thinking involves an 
increasingly co-ordinated transfer of count. Composite units of singletons, and the counting 
of those units, are co-ordinated into a binary operation that, in turn, is reversible (Boulet, 
1998; Davydov, 1992; Steffe, 1994). So a trajectory of broad stages involves progression 
from unitary counting (one by one) to counting of composites (skip counting and repeated 
addition) to binary operation. Figure 1 summarises this trajectory, citing major contributions 
from a range of scholars. 

Stage 
Researchers  

Count-all Composite counting 
Repeated addition 

Known product 
Derived fact 

Kouba, 1989 Direct representation 
(with physical objects) 

Additive Transitional 
counting 

Recalled number facts 

Anghileri, 
1989 

Unary Binary 
Unitary 
counting 

Rhythmic 
counting 

Number pattern Known fact 

Steffe, 1994 Initial number 
sequence 

Tacitly nested number 
sequence 

Explicitly nested number 
sequence 

 
Lemaire & 
Siegler, 1995 

Counting 
set of 

objects 

Repeated addition Retrieval Rapid 
responses 

Lefevre, et al., 
1996 

 Repeated 
addition 

Number 
series 

Retrieval Derived fact 

Mulligan & 
Mitchelmore, 
1997 

Unitary 
counting 
(direct 

counting) 

Repeated addition Multiplicative calculation 

Rhythmic 
counting 

Repeated 
adding, 
additive 
doubling 

Skip 
counting 

Known 
multiplication 

fact 

Derived 
multiplication 

fact 

Sherwin & 
Fuson, 2005 

Count-all Additive 
calculation 

Count-by Learned 
product 

Pattern-based, 
Hybrid 

 

Figure 1. Trajectory for multiplicative thinking (Wright, 2011, p. 37) 

Some caution is needed when interpreting the trajectory. The studies mainly used tasks 
involving single digit factors. A trajectory for multiplicative thinking must also include the 
relationship between multiplication and division (Thompson, & Saldanha, 2003). 
Furthermore, Mulligan and Mitchelmore (1997) found that students operated at varying 
stages for multiplication were dependent on access to manipulatives, problem type and size 
of the numbers involved. Similarly Sherin and Fuson (2005) argued that students’ 
performance on any given task was also dependent on access to number specific knowledge 
resources. Given the variety of problem types to which multiplicative thinking can be applied 
(Greer, 1992) and the complex unit structures involved (Vergnaud, 1994), at best the 
trajectory might describe students’ preferential tendency with an expectation of variability 
given different tasks. 

Work still needs to be done on progression beyond the Known Product Derived Fact 
stage in trajectory above. Jacob and Willis (2003) suggested a further stage labelled 
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Operating on the Operators at which students treat factors as variables and look for 
multiplicative relationships. However, students take considerable time to develop a mature 
sense of when to apply multiplicative relationships appropriately, and frequently confuse 
additive and multiplicative situations (Van Dooren, De Bock, & Verschaffel, 2010). We 
investigated students’ responses to a rich assessment task with a view to gaining insight into 
their preferential stages from the trajectory. 

Method 
The students who provided data for this study came from four Year 5 and 6 classes at a 

State primary school in North-West Melbourne. There were twenty-eight non-English 
languages spoken at home by parents and caregivers, indicative of the diversity of ethnic 
groups in the community. The school was selected for extended in-class support and 
professional learning of teachers because its leaders responded to an expression of interest. 
The school had also received funding in the previous year to work on improving 
mathematics outcomes for students through a cluster model with other schools. The work 
samples presented in this paper were those willingly provided by the students, in line with 
the ethic protocols of the study.  

The samples come from four similar lessons taught by one of the researchers on a single 
day. The lesson was based on a humorous adaptation of The Enormous Turnip, a traditional 
fairy tale (Wright, 1996). In the adapted story the old couple create a competition in order to 
give away the massive turnip. The competition involves finding clever ways to count the 
number of small turnips in a given patch (Fig. 2). Photocopies of the patch were provided to 
students so they could record their work in any way they wanted. The students worked 
collaboratively in pairs and were invited to confer with other pairs once they had established 
a count themselves. Our interest was in the usefulness of the samples for assessment.  In 
particular to see if the samples reflected a trajectory for multiplicative thinking. 

 

 

 

 

 

 

 

 
 

Figure 2. The turnip patch. 

Results 
The problem proved to be challenging for many pairs of students. Of the 30 samples 

collected only 14 (47%) contained the correct total of 273 turnips. The learning trajectory 
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proposed above proved to be a useful way to sort the samples. Multiplicative structure, in the 
form of finding the turnips in arrays using products, was the most common type of response 
(n=22, 73%). Interestingly the skip counting or addition of composite approach used by 
seven students had a higher rate of correct solutions (71%) than more sophisticated 
multiplicative strategies (41%). Table 1 contains the frequency of trajectory stages and 
success rates for the task. 

Table 1  
Trajectory Stages and Correctness Rates of Work Samples 

Trajectory Stage Correct Answers Incorrect Answers Total Answers 
Unitary Counting 0 1 1 
Composite Counting or 
Repeated Addition 5 2 7 

Known Product of 
Derived Fact 9 13 22 

 

More detailed analysis revealed sub-categories within the stages of the trajectory, 
particularly in the ways that composite counting and addition was used. Three main types of 
composite were created by the students, row totals, groups of ten and rows/columns within a 
bordered array (see Fig. 3). These strategies were additive. However, in one case where tens 
were used the strategy was almost multiplicative in that the students appeared to know that 
27 tens were 270. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. Composite counting strategies. 

  The students relied heavily on known facts so evidence of deriving was scarce. When 
they created arrays outside of their fact range the students either used algorithms to find the 
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product or did not record the calculation. In one notable exception the students used the 
distributive property to calculate the product of 6 × 13 using 6 x 10 + 6 × 3 (see Fig. 4). 

 
 
 
 
 
 
 
 
 

Figure 4: Example of derived multiplication facts. 

The 22 samples that exhibited use of array structures were classified in two ways, by 
correctness of answer and the strategy employed for summing the arrays or sections. The 
high occurrence of incorrect answers (n=13) suggested that there were considerable 
inaccuracies in counting the number of turnips in arrays or sections (4) and/or calculating the 
sum of those counts (2) or both types of error (7).  

Counting errors included using the incorrect products for an array, double counting or 
omitting turnips, or miscounting irregular sections. An example of a calculation error is 
shown in Figure 5. The students correctly divided the turnip patch up into small arrays for 
which they had known products. In calculating the sum they arranged all the products in 
vertical order, correctly summed the ones column on the left side but lost track of the tens 
column when transferring to the right hand column of figures. Their answer of 293 was 
therefore 20 more than the correct answer, 273. 

Figure 5. One pair of students correctly found array products but made errors in vertical addition. 

Counting or summing errors derailed so many potentially elegant solution strategies. 
Sorting the array based samples by summing strategies revealed interesting patterns (see 
Table 2).  

 

 

194



Table 2 
 Strategies for Summing the Products and Counts from Arrays and Sections 

 Combining of 
products 

Whole array and 
subtract 
negative space 

Single vertical 
algorithm 

Cumulative 
sums 

Unclear or not 
shown 

Correct 2 0 1 4 2 
Incorrect 1 6 3 2 1 

 

Only three pairs of students combined compatible products to simplify the summing 
calculation. For example, one pair of students used common factors to combine compatible 
products (see Fig. 6). In that sample the students combined multiples of three (27 and 12) 
and of 10 (60 and 20) to make summing easier. The complete negative space strategy 
involved calculating the whole array as complete, using an algorithm for 15 x 27, followed 
by subtraction of the missing space. Some students imagined the items in empty arrays or 
sections while others filled in those spaces with dots or marks. No pairs that used the 
negative space strategy found the correct total. Six students used cumulative sum strategies 
in which they added two products, then added a third to the result, then a fourth and so forth. 
Ironically the success rate of this cumbersome procedure was higher than for a single vertical 
algorithm. 

 

 

 

 
 
 
 
 
 
 
 
 

Figure 6. Common factors used to combine compatible products. 

These data show that most pairs of students were able to apply multiplicative structure to 
individual arrays. However, more than half of the pairs were unable to systematically find the 
total of the arrays and sections. Even successful pairs resorted to cumbersome calculations, 
rather than the application of mental strategies to combine compatible numbers.   

Discussion and Implications 
The complexity of this multi-step task was evident in the diversity of strategies students 

employed. Their recording yielded complex informative data that verified the use of the rich 
task as an assessment tool. Most samples showed that students operated at the Known 
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product or fact/derived product stage as evidenced by their ability to apply multiplicative 
structure to arrays. However, eight pairs chose to apply unitary or additive strategies through 
forming composites such as columns, rows or sets of ten. The task also demanded a 
systematic approach to finding the sum of arrays and sections. Work samples revealed 
inaccuracies in students’ accounting for all items and calculation of the final total. Few pairs 
of students chose efficient ways to combine compatible numbers to ease cognitive load and 
the preference to use written algorithms, often inaccurately, overrode the use of mental 
strategies. This indicates that most students were emerging multiplicative thinkers with some 
way to go before they could operate on the operators and solve complex multiplicative 
problems. Our research suggests that the ability to manage multi-step, combined operations 
tasks is one possible dimension for extending the learning trajectory for multiplicative 
thinking. The work samples also provided a means to sub-categorise the counting of 
composites stage and extend the HLT as it relates to this rich task (See Fig. 7).  

Count-
all 

Composite counting  
Repeated addition 

Known product 
Derived fact 

Extended 
multiplicative 
thinking 

Count 
in ones 

Group in 
non-equal 
composites 

Group in 
equal 
composites 

Partition 
arrays and 
skip count 

Know 
multiplication 
facts 

Derive 
multiplication 
facts 

Multi-step, multi-
operations 

Count 
all the 
items 
in the 
space 
one by 
one 

Count row 
totals and 
use 
addition to 
find the 
total 

Use tens to 
make 
counting 
easier 

Identify 
equal 
composites 
in arrays 
and skip 
count 

Partition the 
space into 
arrays 
accessible to 
known facts 

Partition the 
space into 
efficient 
partitions and 
derive totals 
using 
properties of 
multiplication 

Partition the space 
into efficient arrays 
and combine 
compatible products 
to simplify 
calculation  

 

Figure 7: Subcategorised trajectory of multiplicative thinking. 

A significant strength of using the rich assessment task was the opportunity to witness 
students’ strategic choices and note the implications of those choices. Students’ strategies for 
finding the total were all sound, and often creative, but they lacked the computational fluency 
and flexibility to enact those strategies correctly. Creation of a more detailed and extended 
HLT may assist teachers in identifying specific student’s needs and changes in their strategy 
preferences over time. This opens up opportunities for further research. 
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